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ABSTRACT

In the paper we propose approach for lossless image compression. Proposed method is based on separate pro-
cessing of two image components: structure and texture. In the subsequent step separated components are
compressed by standard RLE/LZW coding. We have performed a comparative analysis with existing techniques
using standard test images. Our approach have shown promising results.
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1. INTRODUCTION

At present time the image compression methods suppose to met ever growing requirements. It is related to
evolution of imaging systems. It is common for mobile devices to be able to capture Ultra HD video. Captured
images should be transferred by communication networks and stored with maximal efficiency. Various kinds
of medical devices generate high resolution images that cannot be compressed with lossy techniques because of
small changes image can be misinterpreted by a physician. In the same time, plenty of other applications require
lossless image compression. Lossless image compression algorithm tends to represent image in such a way that it
could be compressed efficiently with standard entropy or dictionary-based information representation techniques
to remove all perceptual and statistical redundancy are removed without considerable impact on visual quality.

There is considerable success in this field during past decade. But still, current techniques are far from
being universally effective. In the paper we study the possibility of separate image texture and structure lossless
compression.

2. PREVIOUS WORK

Lossless image compression have been very active field of research.1 Large amount of data is necessary to
represent the digital images so the transmission and storage of such images are time-consuming and infeasible.
Hence the information in the images is compressed by extracting only the visible elements. Normally the image
compression technique can reduce the storage and transmission costs. During image compression, the size of a
graphics file is reduced in bytes without disturbing the quality of the image beyond an acceptable level. Several
methods such as Discrete Cosine Transform (DCT), DWT, etc. are used for compressing the images. But, these
usually cannot be implemented to be lossless in efficient manner. DCT is employed to compress the color image
while the fractal image compression is employed to evade the repetitive compressions of analogous blocks.

Lossy image compression methods that are currently in use are based on Fourier or wavelet transform followed
by quantization and entropy coding steps. Recently, proposals have been made to integrate different computer
vision techniques into frameworks for image and video coding. These schemes involve texture analysis, segmen-
tation and classification of the signal into ”texture” and ”structure” parts. Some methods are designed to code
structure with classical approach, but textured regions are synthesized on the decoding side. The employed
synthesis methods basically constitute patch-based inpainting of these regions. Therefore, a lot of care has to be
taken to perform the segmentation and classification in such a way that visual quality will be the same. Most
authors respond to this problem by adding constrains on the classification and synthesis.

In lossless image compression for example, one has to deal with the fact that interesting phenomena occur
along curves or sheets, e.g., edges in a two-dimensional image. While wavelets are certainly suitable for dealing
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with objects where the interesting phenomena, e.g., singularities, are associated with exceptional points, they are
ill-suited for detecting, organizing, or providing a compact representation of intermediate dimensional structures.
Given the significance of such intermediate dimensional phenomena, there has been a vigorous research effort
to provide better adapted alternatives by combining ideas from geometry with ideas from traditional multiscale
analysis.2

In its original formulation, presented by Perona and Malik2 the space-variant filter is in fact isotropic but
depends on the image content such that it approximates an impulse function close to edges and other structures
that should be preserved in the image over the different levels of the resulting scale space. This formulation was
referred to as anisotropic diffusion by Perona and Malik even though the locally adapted filter is isotropic, but it
has also been referred to as inhomogeneous and nonlinear diffusion3 or Perona-Malik diffusion4 by other authors.
A more general formulation allows the locally adapted filter to be truly anisotropic close to linear structures such
as edges or lines: it has an orientation given by the structure such that it is elongated along the structure and
narrow across. Such methods are referred to as shape-adapted smoothing5 or coherence enhancing diffusion. As
a consequence, the resulting images preserve linear structures while at the same time smoothing is made along
these structures. Both these cases can be described by a generalization of the usual diffusion equation where
the diffusion coefficient, instead of being a constant scalar, is a function of image position and assumes a matrix
(or tensor) value (see structure tensor). Lossy image compression methods that are currently in use are based
on Fourier or wavelet transfrom followed by quantization and entropy coding steps. Recently, proposals have
been made to integrate different computer vision techniques into frameworks for image and video coding.6 These
schemes involve texture analysis, segmentation and classification of the signal into ”texture” and ”structure”
parts. Authors of7 code structure with classical approach, but textured regions are synthesized on the decoding
side. The employed synthesis methods8 basically constitute patch-based compression of this regions. Therefore, a
lot of care has to be taken to perform the segmentation and classification in such a way that visual quality will be
the same. Most authors respond to this problem by adding constrains on the classification and synthesis. In the
paper9 analogous blocks are found by using the Euclidean distance measure. Here, the given image is encoded by
means of Huffman encoding technique. The implementation result shows the effectiveness of the proposed scheme
in compressing the color image. Also, a comparative analysis is performed to prove that our system is competent
to compress the images in terms of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM)
and Universal Image Quality Index (UIQI) measurements. The paper10 describes some recent developments
that have taken place in context-based predictive coding, in response to the JPEG/JBIG committees recent call
for proposals for a new international standard on lossless compression of continuous-tone images. We describe
the different prediction techniques proposed and a performance comparison is given. We describe the notion of
context-based bias cancellation, which represents one of the key ideas that was proposed and incorporated in the
final standard. We also describe the different error modelling and entropy coding techniques that were proposed
for encoding prediction errors, the most important development here being an ingeniously simple and effective
technique for adaptive GolombRice coding. We conclude with a short discussion on avenues for future research.

Although the resulting family of images can be described as a combination between the original image and
space-variant filters, the locally adapted filter and its combination with the image do not have to be realized in
practice and there is a place for future investigation.

3. SEPARATE TEXTURE AND STRUCTURE CODING USING TV-L1

Proposed way of image compression is shown on figure 1. First image is separated on two components: ”structure”
and ”texture”. To estimate the image structure we apply total variation anisotropic smoothing.14 We use
algorithm of total variation minimisation proposed by Antonin Chambolle in6 . Then we compute image texture
as the difference between the source image and image structure. So the sum of structure and texture components
will be equal to original image on figure 2.

An image can be modelled as a function u : Ω → R where Ω ⊆ R2. In the discrete settings u : 1, 2, . . . , n ×
1, 2, . . . ,m→ R.

The general idea in order to decompose an image into s + t is given by Meyer’s models:11

inf{F1(s) + λF2(t) : u = s+ t} (1)
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TV-L1

Texture Structure

RLE—coding

Entropy—coding

Input image

Coded image

Figure 1. Blockscheme

here F1, F2 ≥ 0, X1, X2 are functional spaces or distributions such that X1 = {s : F1(s) < ∞} and X2 = {t :
F2(t) <∞} and X2 = {v : F2(v) <∞}. The constant λ > 0 is a tuning parameter. Many problems in imaging
can be represented by this model withan appropriate choice of F1 and F2. In our particular case, we are looking
for two spaces X1 and X2 , and two corresponding functionals F1 and F2, such that if s is structure and t is
texture, we have F1(s) << F2(s) and F1(t) >> F2(t). Here texture component must be penalized by F1, and
structure component should be penalized by F2. Total variation minimization is a convex variational method
that plays an important role in imaging as it allows for sharp discontinuities in the solution. However, it is
known to be difficult to minimize due to the non-smoothness of the objective function. A good choice for F1 is
the total variation of u, that tends to involve constant regions and permits sharp edges, that are necessary for
the structure part. It remains to discuss what space X2 would model the textural part. TV model is:

inf
(s,t)∈BV (Ω)×L2(Ω)

{
∫

Ω

|Ds||λ‖s‖2L2(Ω), u = s+ t} (2)

here ∫
Ω

|Du| = sup{
∫

Ω

s∇~φdx, ~φ ∈ C1
0 (Ω,R2), ‖~φ‖inf ≤ 1} (3)

denotes the total variation of u in Ω, also denoted by TV (u) or by |u|BV (Ω). The component u belongs to the
space of functions with bounded variation BV (Ω) = {f ∈ L1(Ω) :

∫
Ω
|Du| <∞}.

The space of functions with bounded variation penalizes fast changes of the image (such as noise or texture),
but allows for piecewise-smooth functions, made of homogeneous regions with smooth contrasted boundaries.
Since almost all level lines (or isolines) of a BV function have finite length, the BV space is considered adequate
to model images containing shapes.

We have chosen6 method for solving the TV − L1 problem. This method is based on smoothing of the TV
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Figure 2. Image separation to structure and texture

term:

TV (u) '
∫

Ω

√
|Du|2 + ε2 (4)

Different optimization techniques based on total variation-based regularisation was applied in the field of
image processing. Let’s introduce notations used in the rest of the paper. In the continuous setting, a grey scale
image can be modelled as a function u : Ω→ R. Here ω ⊂ R2 is usually a rectangle and u(x) is the intensity of the
grey level at the point x. In the discrete setting an image is a function u : {1, 2, . . . , n}× {1, 2, . . . ,m} → R with
m×n - resolution of image. To tackle the task of image compression we first separate image to two components
u = s+ t, where s denotes structural part of image and t is textural information.

Let Ω ⊂ R2 to denote a subset of the plane and I(·, t) : Ω → R be a family of gray scale images, then
anisotropic diffusion is defined as ∂I

∂t = div (c(x, y, t)∇I) = ∇c ·∇I+ c(x, y, t)∆I where ∆ denotes the Laplacian,
∇ denotes the gradient, div(. . . ) is the divergence operator and c(x, y, t) is the diffusion coefficient. c(x, y, t)
controls the rate of diffusion and is usually chosen as a function of the image gradient so as to preserve edges in
the image. Pietro Perona and Jitendra Malik pioneered the idea of anisotropic diffusion in 1990 and proposed
two functions for the diffusion coefficient:

c (‖∇I‖) = e−(‖∇I‖/K)2 (5)
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and

c (‖∇I‖) =
1

1 +
(
‖∇I‖
K

)2 (6)

the constant K controls the sensitivity to edges and is usually chosen experimentally or as a function of the noise
in the image.

Let M denote the manifold of smooth images, then the diffusion equations presented above can be interpreted
as the gradient descent equations for the minimization of the energy functional E : M → R defined by

E[I] = 1
2

∫
Ω
g
(
‖∇I(x)‖2

)
dx where g : R→ R is a real-valued function which we will see is intimately related

to the diffusion coefficient. Then for any compactly supported infinitely differentiable test function h , we have:

d

dt

∣∣∣∣
t=0

E[I + th] =
d

dt

∣∣
t=0

1

2

∫
Ω

g
(
‖∇(I + th)(x)‖2

)
dx (7)

=

∫
Ω

g′
(
‖∇I(x)‖2

)
∇I · ∇h dx (8)

= −
∫

Ω

div(g′
(
‖∇I(x)‖2

)
∇I)h dx (9)

where the last line follow from multidimensional integration by parts. Letting ∇EI denote the gradient of E
with respect to the L2(Ω,R) inner product evaluated at I, this gives

∇EI = −div(g′
(
‖∇I(x)‖2

)
∇I) Therefore, the gradient descent equations on the functional E are given by

∂I
∂t = −∇EI = div(g′

(
‖∇I(x)‖2

)
∇I) Thus by letting c = g’ we obtain the anisotropic diffusion equations.

Modified Perona-Malik model5 (that is also known as regularization of P-M equation) will be discussed in
this section. In this approach, the unknown is convolved with a Gaussian inside the non-linearity to obtain the
modified Perona-Malik equation:

∂I

∂t
= div (c(|DGσ ∗ I|)∇I)WhereGσ = Cσ−(1/2)exp

(
−|x|2/4σ

)
. (10)

The well-posedness of the equation can be achieved by regularization but it also introduce blurring effect,
which is the main drawback of regularization. A prior knowledge of noise level is required as the choice of
regularization parameter depends on it. Then the both components are encoded by RLE and LZW.

Image splitting is schematically represented on figure 3. Here Ω is textured region and S is the whole image.
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Figure 3. Image separation
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In numerical and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for
which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over
Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).
Compression process is very similar to that of a conventional coder such as JPEG. However, the functionality
is very different. In a conventional coder, since the quantization result is losslessly encoded, the quantization
process determines the allowable distortion of the transform coefficients. The quantized coefficients are lossy
encoded through an embedded coder, thus additional distortion can be introduced in the entropy coding steps.
Thus, the main functionality of the quantization module is to map the coefficients from floating representation
into integer so that they can be more efficiently processed by the entropy coding module. The image coding
quality is not determined by the quantization step size δ but by the subsequent bit stream assembler.

4. COMPARISON WITH EXISTING APPROACHES

A high level view of the encoding algorithm is shown here:

1. Initialize the dictionary to contain all strings of length one.

2. Find the longest string W in the dictionary that matches the current input.

3. Emit the dictionary index for W to output and remove W from the input.

4. Add W followed by the next symbol in the input to the dictionary.

5. Go to Step 2

A dictionary is initialized to contain the single-character strings corresponding to all the possible input
characters (and nothing else except the clear and stop codes if they’re being used). The algorithm works by
scanning through the input string for successively longer sub-strings until it finds one that is not in the dictionary.
When such a string is found, the index for the string without the last character (i.e., the longest substring that
is in the dictionary) is retrieved from the dictionary and sent to output, and the new string (including the last
character) is added to the dictionary with the next available code. The last input character is then used as the
next starting point to scan for sub-strings.

For evaluation purposes we use image dataset of 6 natural images presented at Figure 4.

We compare our technique to two different ones. The first is based on Haar transform, and the second one
on Gaussian smoothing.

4.1 Haar transform for image separation

For this method source image is decomposed to high and low frequency components. Standard DB9 wavelet
transform is sufficient to code structural information. So we code textural information with standard JPEG2000
compression scheme. To apply a wavelet transform to an image we need to use a 2D version. In this case
it is common to apply the wavelet transform separatelly in horizontal and vertical directions. This approach
is called the separable 2D wavelet transform. It is possible to design a non separable 2D wavelet, but this is
generally increases computational complexity with little additional coding gain. A sample one scale separable 2D
wavelet transform. It is possible to design a non separable 2D wavelet, but this generally increases computational
complexity with little additional coding gain.

The 2D data array representing the image is first filtered in the horizontal direction, which results in two
sub-bands: a horizontal low-pass and a horizontal high-pass sub-band. These sub-bands are then passed through
a vertical wavelet filter. The image is thus decomposed into four sub-bands: LL (low-pass horizontal and vertical
filter), LH(low-pass vertical and high-pass horizontal filter), HL (high-pass vertical and low- pass horizontal
filter) and HH (high-pass horizontal and vertical filter). Since the wavelet transform is linear, we may switch the
order of the horizontal and vertical filters yet still reach the same effect. By further decomposing sub-band LL
with another 2D wavelet (and iterating this procedure), we derive a multiscale dyadic wavelet pyramid.
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Figure 4. Test images

The DWT of a signal x is calculated by passing it through a series of filters. First the samples are passed
through a low pass filter with impulse response g resulting in a convolution of the two:

y[n] = (x ∗ g)[n] =
∑

k=− infinf

x[k]g[n− k] (11)

The signal is also decomposed simultaneously using a high-pass filter h. The outputs giving the detail
coefficients (from the high-pass filter) and approximation coefficients (form the low-pass). It is important that
the two filters are related to each other (Figure 5).

g[n]

h[n]

↓ 2

↓ 2

x[n] Fine

Details

Figure 5. Control system

However, since half the frequencies of the signal have now been removed, half the samples can be discarded
according to Nyquist’s rule. The filter outputs are then sub sampled by 2. In the next two formulas, the notation
is the opposite: g-denotes high pass and h−low pass as is Mallat’s and the common notation:

ylow[n] =

∞∑
k=−∞

x[k]h[2n− k] (12)

yhigh[n] =

∞∑
k=−∞

x[k]g[2n− k] (13)
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This decomposition has halved the time resolution since only half of each filter output characterises the signal.
However, each output has half the frequency band of the input so the frequency resolution has been doubled.
With the sub sampling operator ↓.

ylow = (x ∗ g) ↓ 2 (14)

yhigh = (x ∗ h) ↓ 2 (15)

However computing a complete convolution x*g with subsequent down sampling would waste computation
time. The Lifting scheme is an optimization where these two computations are interleaved.

4.2 Gaussian smoothing for image decomposition

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the form:

f (x) = ae−
(x−b)2

2c2 (16)

for arbitrary real constants a, b and c. The graph of a Gaussian is a characteristic symmetric ”bell curve” shape.
The parameter a is the height of the curve’s peak, b is the position of the center of the peak and c (the standard
deviation, sometimes called the Gaussian RMS width). We use Gaussian smoothing to separate image to two
components: high frequency and low frequency one.

4.3 Experimental results

Experimental results are presented in table 1 (less is better). Numbers represent a ratio of uncompressed image
data and data preprocessed by given approach and then compressed with RLE+LZW.

Table 1. Table 1 — Compression rate

Image Our Gaussian Haar Pure RLE+LZW
Barbara 0.19 0.12 0.16 0.39

Boat 0.2 0.27 0.21 0.41
Cameraman 0.1 0.12 0.18 0.28

Couple 0.27 0.23 0.2 0.44
Hill 0.12 0.17 0.15 0.49

House 0.05 0.06 0.06 0.35
Dataset 0.21 0.24 0.26 0.36

We had run our method on images from Inria Holydays dataset18 which contains 1491 images in total. This
dataset includes large variety of scene types and thus is suitable for benchmarking of compression method. On
this dataset we were able to determine that our method of image decomposition is superior to others in 71%
of the time. Average compression rate for our method is 0.21. Gaussian and Haar decomposition got 0.24 and
0.26 respectively. Our approach usually perform better for images with number of highly stochastic textures
occupying relatively big regions.

As you can see our approach is superiour to Gaussian and Haar-based splitting. Particular compression ration
is related to amount and spatial allocation of different textural and structural components.

5. CONCLUSION

The paper presents a lossless image compression technique based on image texture and structure separation. To
estimate the image structure we applied the total variation anisotropic smoothing. Then we computed image
texture as the difference between the source image and image structure. The both components are encoded
by RLE and LZW. Experimental comparisons to state-of-the-art video compression methods demonstrate the
effectiveness of the proposed approach.
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